If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+320x+25600=0
a = -16; b = 320; c = +25600;
Δ = b2-4ac
Δ = 3202-4·(-16)·25600
Δ = 1740800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1740800}=\sqrt{102400*17}=\sqrt{102400}*\sqrt{17}=320\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-320\sqrt{17}}{2*-16}=\frac{-320-320\sqrt{17}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+320\sqrt{17}}{2*-16}=\frac{-320+320\sqrt{17}}{-32} $
| 4y2+8y-6=0 | | 1/42(x−14)=4 | | 6(8-3x)-(2x+2x+1)=107 | | 56+(6x+4)=180 | | 4/5=x+5/9 | | 16-5(3t-4)=8(-2t=11) | | 15-6x=7x+53 | | 5=v29 | | 3x+2(1-3(x-2))=2x | | 4y=38-0.5(4y+16) | | 5=v=29 | | 2x-x/3=24 | | 3x2+5x=2 | | L(p)=3p2+25-140 | | 3(3+x)=5(2x+7) | | 30-x/5=-12 | | 2(2n+2)=6(6n+1)+2 | | 4n−18=52 | | .75=(a-51)/51 | | k=+1=-27 | | 5m=(5/6)*(6m-10) | | 4-2x(7-2)=-96 | | -1=-x/3 | | 3x+7(x+5)=5x+38 | | (3x6)-5=13+(2x5) | | -18=5-(6k-19) | | 23+5w=-12 | | 2y/21-9=7-3y/7 | | 8-(u+1)=2(1-4u)-9 | | 5/2x-1x=3+3/2x | | 17/10+5/4m=m+6/5+1/2 | | 3n/5=4 |